1 research outputs found

    Tamper detection of qur'anic text watermarking scheme based on vowel letters with Kashida using exclusive-or and queueing technique

    Get PDF
    The most sensitive Arabic text available online is the digital Holy Qur’an. This sacred Islamic religious book is recited by all Muslims worldwide including the non-Arabs as part of their worship needs. It should be protected from any kind of tampering to keep its invaluable meaning intact. Different characteristics of the Arabic letters like the vowels ( أ . و . ي ), Kashida (extended letters), and other symbols in the Holy Qur’an must be secured from alterations. The cover text of the al-Qur’an and its watermarked text are different due to the low values of the Peak Signal to Noise Ratio (PSNR), Embedding Ratio (ER), and Normalized Cross-Correlation (NCC), thus the location for tamper detection gets low accuracy. Watermarking technique with enhanced attributes must therefore be designed for the Qur’an text using Arabic vowel letters with Kashida. Most of the existing detection methods that tried to achieve accurate results related to the tampered Qur’an text often show various limitations like diacritics, alif mad surah, double space, separate shapes of Arabic letters, and Kashida. The gap addressed by this research is to improve the security of Arabic text in the Holy Qur’an by using vowel letters with Kashida. The purpose of this research is to enhance Quran text watermarking scheme based on exclusive-or and reversing with queueing techniques. The methodology consists of four phases. The first phase is pre-processing followed by the embedding process phase to hide the data after the vowel letters wherein if the secret bit is ‘1’, insert the Kashida but do not insert it if the bit is ‘0’. The third phase is extraction process and the last phase is to evaluate the performance of the proposed scheme by using PSNR (for the imperceptibility), ER (for the capacity), and NCC (for the security of the watermarking). The experimental results revealed the improvement of the NCC by 1.77 %, PSNR by 9.6 %, and ER by 8.6 % compared to available current schemes. Hence, it can be concluded that the proposed scheme has the ability to detect the location of tampering accurately for attacks of insertion, deletion, and reordering
    corecore